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Abstract

Partitioning ix an important issu0 in a variety of applications. Two examl)les at(' domain d(,('om-

t_osition for t)aralM cointmting an(1 (:()lot" image (tuantization. In t.h(' ti)rm(w w(, ne,'d to t)artition a

comlmtational task over many t)ro('essors: in the latter w(, need to partiti(m a high r(,solution color

spa('(, into a small numl)er of repr(,s(,ntativ(' or)lots. In I)oth cases, partitioning nmst t)e (l(m(_ in a

mann(,r that yiehls good results as (l(,fin(,(t by an at)t)licati(m-Sl)(,(:ific metric.

Binary dissection ix a le(:hni(lu(, that has 1)een wid(qy used to partition ilOll-UlliforIll (lonlaiils

over I)aralM ('omput(,rs. It t)roc(_(_ds by r(wursivcly partitioning t h(' given domain into two ])arts.

sucll that each part has al)proximat(qy equal ('Omlmtatiomfl load. The basic dissection algorithm

does not consi(l(w tim perim('t(w, surf;u:(, area or ast)e('t ratio of tim two sub-r(@ons gen(,rawd at

each step and can thus yield decompositions that have t)oor commmli('ation t() ('Omlmtation ratios.

\V( _ have dev(qop(_d and imph,ment(,(l several variants of tlw binary (liss(wti()n approa('h dlat

atteml)t to r(,me(ly this limitation, aw faster than the t)asi(' algoritlm,, can 1)e al)plied to a variety
of prot)lems, an(l are amenabh, to paralMization.

The Parametric Binary Dissection (PBD) algorithm tries to minimize t tw (lifter(race I)etw(_en

volume + A × (su@zce) fl)r each of the two subr(,gions it generates at each step. Wh(m ai)l)li(_d to

parallel computing, volume repres(,nts the amount of coml)utation r(_(luired while .surface is t)rol)Of

_ioIla] to illt('rpro(:(_ssor ('Oillllllllli('a_i()ll. The t)al'alll(_t(w )_ p(Wlllits llS to trade off loa(l illl])alall('u

against (:ommmfication overh(_a(t. When A ix zero, t h( _algorithm r(,du('es to simple ])inary (lisse('t ion.

The Fast Adaptive Dissection (FAD) algorithm ix used for color image (lllalltization. wh('r('
smnples in a high r(,solution color st)at( , are mapp('(I into a lower resohltion spa(:e in a way that

minimizes (:olor error. In this (:as(' the algorithm tries to minimize th(, i)rodu('t polrularity x color

e77"or for the resulting sub-regions, popularity is the mmfi)er of colors in a region whil(, color error ix

tit(' maximum (tistance between l)oints within a region.

We dcs('rib(, tim t)('rforman('(' of PBD and FAD on a variety of rel)resentativ(_ l)rot)h'ms and

present ways of l)aralMizing the PBD algorithm on 2- or 3-d m(,shes and on hyl)(_r(:ul)es.
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1 Introduction

The partitioning of 1)robl(_nls over the t)ro(:essors of a l)aralh_l computer system remains tim subje(:t

of eonsiderat)h_ l'esear(:h. This l)rol)lenl is t)arti(:ularly (lifii(:ult when the domain or regioll being

l)artitioned has nommiform (:omt)utational requirements. For examl)le , in a (:limate mo(lel, some

areas of tile (_arth's surfa(:(_ may requir(_ greater (:oml)utational effort than ottmrs. We would like

to ai)l)ortion parts of tim l)rol)l(_m domain ov(_r tim l)r(_(:essors of tim system in such a way as t()

l)ut equal (:oml)utationa] loa(t on all l)ro(:essors, tlmret)y minimizing tim total (:omt)utational tim(_.

Another examt)l(_ is the solution of aero(tynami(: l)roblems using "unstru(:tur(_d" meshes whi(:h ar(,

graI)hs embe(l(t(_(l in 2- or 3-(limensional sl)a(:(_ [3]. Comt)utation is (:arrie(l out oil t]l(_ llO(l(_s ()t' th(_

graph, alternating with (:ommuni(:atioll ow_r tim (,(tg(_.s.

Problems of this tyl)(, r(_(tuire hug(_ amounts of (:Oml)utational l)ower an(t are at tim limits of

the memory (:ai)aciti(_s of th(' largest 1)aralh_l 1)ro(:(_ssors. There is a pressing nc('(t for t(_('lmiqu(,s t()

imt)rov_ tim rumfing tim(_ ()f such l)robh_ms, I)('_(:aus(_ tlmy re(tuir(_ scarce and (_xt)ensiv(_ resour(:es

for their solution an(t also b(_(:aus(_ the s()lution itself' has great e(:on()mi(: vahle.

The binary disse(:tioll or orthogonal re(:ursiv(, t)al'titioll algorithm was deveh)l)(,(t t)y Bergcr &

Bokhari [1] as a means tbr partitioning non-uniform domains. This apl)roa(:h l)ermits a very fast

solution to tlm partitioning ])roblem and has been su(:(:essi'ully al)pli(_(t in practice [4]. This algorithm

inakes a series of 1)is(_ctions, along orthogonal dire(:tions, minimizing tim load iml)alan(:(_ at ca(:h

stet). Sin(:(_ the partitioning attempts only to I)alan(:e the load, the su|)regions generate(l may hav(_

poor (:ommuni(:ation to (:omi)utation ratios. This is |)e(:ause the simple partitioning criterion (loes

not (:onsider the perilneter, surface area, or ast)e(:t ratio of tim sul)regions being generat(_(t.

In the current l)al)er we present two variants of the. |)inary dissection algorithm. These are

Parametric Binary Dis._'_¢ction (PBD) and Fast Adaptiv(_ Dissection (FAD).

In Param(_tri(: Binary Dissect|oil ea(:h re(:ursiw_ (:ut is chosen to minim|z(' volum(_ + k x (su_if(_ce).

When the (h)main is a 2-(timensional region, surface (:oul(t refer to the l)erimeter of a subregion. In

the 3-d (:a_se it ('oul(t refer to the surfa(:(_ area. When PBD is used to partition (_ml)(_(l(t(_(t gral)hS,

volume refers to the numl)cr of vcrti(:es in a region an(t surface the numl)cr of e(tges leaving a region.

In general, ,surface is a m(_asure of tim communi(:ation ov('xhea(t and tile parameter A l)crmits us

to tra(tc off load im|)alall(:(_ against (:ommuni('ation ov(_rhea(l. We (:an sacrifice some amount of

load |)alan('(_ for |)ett(_r (:ommuni(:ation balan('(_ i_l or(h_x to obtain f'aster overall (:omt)utation tim(_.

Wlmn _ is zero. th(_ tmw algorithm r(_(hwes to simt)l(_ binary (liss(_(:tion.



Fast Adaptive Dissection finds application in color image quantization, ill which samples in a

high-resolutioi, ('olor space are mapped onto a lower resolution space in a way that minimizes the

color error. In our formulation of this problem, one is giw',n a 3-dimensional grid in which some

points are occupied and others are vacant. The objective is to partition this grid into regions

such that (1) the total number of regions is bounded by some giw;n maximum, and (2) a single

value can be comt)ute(l fi)r each region which is a satisfactory ret)rese, ntative of the enclosed points

subject to some global error metric. We have t_)und that a partitioning process which attelnpts to

minim|z(' th(_ l)rodu(:t popularity x color er_vr yields good results at high sl)eed. Here popularity is

the numl)er of (:olors in a region, whih_ color error is the maximum (tistan(:(', l)etwe(ul two l)oints in

th(' region.

Mesh partitioning is on(_ of the l)robh_ms to whi(:h we apply our n(_w algorithms. A mmfi)er of

other partitioning strategies have I)een t)rol)osed fi)r this t)rol)lem, ail(1 it is worthwhil(_ to coml)ar(_

()ur al)i)r()ach with existing work. The l)r(,vious work. e.g. [8], is built around the notion of gral)h

set)arators. In such a formulati(m a mesh is viewed as an undirecte(l graph. All (_dge-se, l)arator is

a s(_t of (_(tges that disconnects the grat)h into two nearly e(tual sized l)ieces. The goal of s(,t)arator

bas(_(l ai)t)roaclms is to find sel)arators of small size, therel)y r(_ducing th(_ comnmlli('ation ov(whea(l.

Ther( _ ar(' two principal (liffer(_n(:es l)etw(_(ul parametric |)|retry (tisse(:ti(_m all(t S(_l)arator-I)as(,d

algorithms. PBD/FAD constrain all cuts to ])e straight lines, a constraint not iml)OSed on the other

m('tho(ls. As a cons(_(lU(ulce, fi)r certain prot)lems and ranges of parameter values, the t)artitions

produc(,(l by PBD/FAD on this at)l)li(:ation are ahnost certainly infi'xior. This defi(;ien('y is balanced

|)y th(, fact that

• PBD/FAD are mor(_ general in their al)t)lication (e.g. wc sec no (_tsy way to use graph s(;t)a-

rators for the color quantization t)r(,t)lem)_

• linear ('ut (:ollstrailltS arise naturally in a numl)er of al)l)lications, and

• PBD/FAD are un(lout)tedly the simt)h_st , and likely fastest, Inetho(ls among the alternatives.

Thus th( _ quality of partitions l)rodut'e(t t)y PBD on the, specific t)rol)lem of mesh 1)artiti,)ning is

not the sole measure of its value. Furthermore, PBD is trivial to extend to graphs with weighte(l

nodes an(t e(tge, s.



2 Binary Dissection

The original binary (lisse(:tion algorithm can I)c al)l)lie(t to a variety of situations, hi tim l)resent

t)al)(_r we are coll(:(_rn(?(t with the partitioning of 2, 3 (or t)ossibly higher) (tim(msional domains

('ontaining n points specified t)y their :_', y, z,... (:oordinates. Th(_se points are t)ise(:t(_(t along the :r

(tire(:tion t)y sorting the J- (:oor(tinates and fin(ling the mid-point. This t)ro(:ess is a(:('omt)lished in

O(n log n) time ti)r sorting and O(n) time for splitting the list of points. Th(_ |)ise(:tiotl t)ro(:ess is

then repeated along the y (tire(:tion for the two sul)(tomains an(t so on. If the d(',pth of partitioning

(the mmfi)(_r of times the ])ise('tion is (:arrio,(t out) is given I)y d, then the entire t)ro(:(_ss takes tim(_

d-l

O(_ (2 i (n/2 i log n/2') + 't,)) - O(d'_, log n). (1)
i=0

Sin(:(_ the del)th of t)artitioning d _< logn, this results ill O(n log 2 n) in the case of l)ro|)lems wher(_

the partitioning is (:arried out to larg(_ (let)ths. However. in many i)rol)lems of interest the (tepth of

t)artition d is small (:omt)are(t to log n and it is mor(_ nmaningfifl to uso, expression (1).

The basic I)ise('tion step (tes(:rit)(_,(t above (:an also be (:arrie(l out using a fast (()(7_)) median

finding algorithm [2]. This ('liminate, s sorting and we at(; left with O(dn) time. However the

('onstants involved in th(' median finding algorithm aro large aH(l this m(_tho(l r(_,mains of the()reti(:al

interest only.

Binary (tisse('tion partitions only on the basis of tmml)ers of points and ignores their spatial

distribution. As a result it can yield partitions that hav(_ t)oor ast)e(:t ratio (the ratio of largest to

smallest sides), whi(:h may I)e utl(t(_siral)l(_ ixl sl)ecifi(" at)t)li(:ations. When binary (tiss(',(:ti()tl is at)])lie(t

to the l)artitioning of gral)hs em|)ed(t(_(t ill 2 or 3 (tim(_nsi(mal sl)a(:(_, as is the (:ase in many iml)ortant

a(_ro(tynami(: l)rot)lcms, tim e(tg(_ inti)rmation (whi(:h (tetermines the alllount of information that

nee(Is to b(_ (:ommuni(:ate(t betw(_ell t)OilltS) is ignore(t. Thus whil(_ 1)inary (tisse('tion (:an 1)e (and

has 1)een) at)i)lie(l to such t)rol)lenls, the partitions ot)taine(1 can sometimes t)e poor as far as the

(:omt)ut(_/('omnmni('ate ratio is (:on(:erne(t.

3 Parametric Dissection

Parametri(" binary (liss(_(:tion reln(_(ties one of the shortt:omings of the t)asi(: algorithm by expli('itly

taking surf'a(:es of rt_gions into a(:(:omlt. Thus, if the t)rol)lem is to l)artiti(m a thr(_e (tim(_nsional

region that (:ontains a mmll)er of points, we minimize at (_a(:h t)is(_ction st(_ I) voluTm' + )_× (suvfac_)

for the two sift)regions.
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By volume we mean the number of points in each region this is the quantity that simt)le

binary dissection minimizcs. S'a_face can refer to a variety of region properties. For example, if the

problem is to partition a 2-dimensional re,gion into subregions such that the resulting subregions

are as square as t)ossibh;, we may wish to use the perimeters of the resulting rectangles as our

surfa(:e t)rol)erty. At each l)ise('tion step we would minimize the numl)er of l)oints in each re(:tangle

plus ,k times their l)erimeters. The t)arameter _ permits us to trade off vohmm against surfiu:(_ t)y

sacrificing some am(rant of volmn('_ balance, we (:all improve the surface balan('e.

The i)r(_(:('(ling examl)le (:an be exten(t(_d ill an ol)vious fashion to 3 or higher dimensions. Various

sm'face l)rol)erties can be used. In the following discussion we shall a_ssume that the surface t)rot)erty

can |)(_ c,)ml)ute(t easily, so that the analysis of time coinplexity of the algorithm is not afl)_(:ted

t)y it. We (:all us(_ a compli(:ated surface l)roperty if' we are willing to pay fi)r the time required to

conli)ute it while carrying out I)inary disse(:tion.

The discussion so far has I)een ill terms of t)oint prol)lems, where we are given a collection of

points in 2. 3 or higher dimensional sl)a(:e. A more (:Olnl)li(:ated situation arises when w(; are given

a grat)h embedded in 2, 3 or higher dimensions. Each l)oint or node has asso('iated with it a set of

(:oordinates and an adjacency list. The ol)je('tive here is straightforward: each bisection minimizes

node.s + ,_ x ( ed.qes c',t ).

Grat)h l)artitioning 1)roblems arise in many environments, most notably in the analysis of un-

structm'e(t meshes. When su(:h meshes are l)artitioned and mal)t)ed onto l)aralM computers, the

rmming time is modeled by

max 'i,, + a × m,,i,,.:/ (2)
all refion.s

Here £ (:orresl)onds to the com, m, unieate to compute ratio [i)r the given l)aralM (:omputer system,

i.e. the ratio of time required to ti,t(:h a datum fi'om a remote processor to the time to ('omtmte

on a datmn on the local pro('essor. The time given by (2) is normalized to th(' tim(; required to

COml)ut,, on one point, assuming a mfiform (:Omlmtation cost for ea(:h t)oint. The (lensity of edges

in mlstructm'e(t meshes can wtry enormously from ()lie part of the domain to another and it is easy

t() s(w that taking edges into a(:(:OUllt can result in t)etter t)artiti(mings. This would not 1)e the (:a,,_e

for elnl)(_(t(l(_(t grat)hs ill which the edges ar(' more or less mlii'ormly distributed. We are assmning

that the communication overhead is proportional to the am(rant of data transmitted. This holds

true ti)r too(tern parallel machines with high t)erformance (:ommmfi(:ation hardware.

Figure 1 gives a simple examt)l(_ of how parametric dissection can lead to better partitions when



al)l)liedto graphs.

For thecaseof point t)roblemstim (:omt)lexityof t)aram('_tri(:binary dissectionis un(:hangedat

O(dn log n). where d is the depth of partitioning. For graph l)rol)h,ms, we have to look _t all (;dges

t)('_for(_ splitting, at every (h_t)th of th(' partition. H(ul(:c', the (:Ollq)h'xity I)(_(:omes O(max[dn log T_..

d_e]), where c is the mmd)er of edges in the graph.

4 Fast Parametric Dissection

A major fa(:tor ('ontril)uting t() the time (:omi)lexity of the binary diss('_('tion algorithms t)r('sent(_d in

Sections 2 and 3 is rel)('at('d sorting at each d('pth. We now show how l)aralnetric binary dissection

can t)e a(:(:Oml)lished t)y sorting o_dy once per dimension t)y using a well known technique [12]. Th('

fast algorithm we l)res(ufl also iml)roves the time required fi)r plain binary dissection.

A S(_l);trate in(lex list is (:r('ated for each dimension. Elem(_nt i of this list gives the in(lex of the

of the data point that is ith in sorted or(h,r. WhelJ a regiolL is l)artitioned, all in(li('c's are split, s()

that the sul)lists corr(_st)on(ting to each subregion remain sorted. For l)urt)oses of ('xt)osition. we

assume a 3-(t graph partitioning t)rol)lem and partition on the b;tsis of exl)rt'ssion (2) of S('ctiolJ 3.

Assume that the in(tex lists for tim :z:, y and z dimensions are stored in arrays xlist [] ,ylist []

and zlist []. The sul)region t() t)e partitiolmd is stored in array positions L...U. This means that

tim x diln(;nsion in(lex list ext('_n(ts fl'om xlist [L] to xlist [U] and so on. The (:urrent d('pth of

partitioning ix depth. This variat)le is initialized to t)e the maximum (tepth to which l);_rtitioning is

to I)e carried out and is decr(un('alt(_d at (;a('h level. Th(' coordinates of point i are stored in x [i],

y [iJ , z [±]. The t)aram('_tric 1)is('x'tion is ('omput(;d as foll()ws.
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Figure 1: The benefit of p_trametric dissection. Ill part (;l) plain binar.v dissection is _tpl)lied to giv(, perfect

node hal;trice. The numbers in the four regions give the sum of ilodes in region and edges levering region (i.e.,

in th(, expression fi_r time to (_x(,(:ute (2) in main text. A is assumed t_ I)e one). The m;_ximum sum is 6.

In part (1_) par_lmetric dissection is employed and results in m_ximum sum 5, a,s the new algoritlml avoids

cutting thrt)ugh regions with high edge d('nsits.



1)rocedm'(_PARAMETR IC_CUT(depth, L ,U, x,y ,z, xlist, ylist ,zlist);

1. Swe(; t) forward frOlll i=L to U counting tim edges that would le,av(_ t,lm left hand region, if the

left hand rt_gion was L to i (inclusiv(_). StoI'(_ tim result ill leftvec [i].

2. Sw(_e t) backwards ti'om i=O down to L comJting tim (_(lgcs that would leave tim right hand

region, if the right hand regioll was ± to U (in('lusiv(_). Store the result in rightvec [i].

3. Sw(_e t) forwar(t again fl'om i=L to U to find tim ol)timal split point:

• the left hand r(_gion ('Oral)rises L to i,

* tim right hand region ('omt)ris(_s i+l t() U

• tim ol)timal sl)lit point SPLITPLACE is the vaJlle of i for whi('h tlm ol)j(,(_tiv(_ MAX((i

--L+I) + A×(leftvec [i] ), (U-i) + A×{ rightvec [±+ 1] )) is minimmn. The value

x[SPHTPLACE] is SPLITVALUE.

4. xlist has now })(K_II split int.() two parts, L to SPLITPLACE and SPLITPLACE+I to U. Th(' :r

(:oor(tinat(_s of thes(_ l)oints ar(_ alr(_ady sorted since th(_ original sorted in(tex list is undistm'l)(_(l.

5. Split t h(_ ylist: swe(_ l) forward from i=L to U moving suc(:(_ssiv(, values of ylist [i] for which

x[yl±st[±]] _<SPLITVALUE to th(_ first part of th(_ list (Figure 3 illustrates this for a 2-(t

1)robhm0. Tim I'('maining wdues are moved to t.lm s(_(:ond part of th(_ list..

6. Siinilarly split tim zlist.

7. All three in(li('(_s xlist, ylist and zlist htwe now t)e(m split so that el(mmnts [L.. SPLITPLACE]

of thes('_ lists contain the points in one of tim sul)regions and [SPLITPLACE+ 1.. lJ] thos(_ in th(,

other. When a(:(:(_ss(_d through these lists tim x, y and z coor(tinat(_s of points are in sorted

()r(](_l'.

8. Re(:ursiv(_ly cut for next (tel)th I)ut along next (tilnension:

if(depth> 1) then{

PARAMETRIC_CUT (depth- l, L, SPLITPLACE, y, z, x, yl i St, zl-i St, x] ist )

PARAMETRIC_CUT (depth- 1, SPLITPLACE+ 1 ,U,y,z,x,yl±st, zlist, xlist) }

ell(t PARAMETRIC_CUT;

7
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Figure 2 clarifies how leftvec and rightvec are comtmted. The vertical dashed lines in this

figure show one possibh_ splitting location, SPLITPLACE. The, value of leftvec for this SPLITPLAC£

is 5. This is because if the right hand region was chosen to be up to and including the node. through

which this dashed line passes, the mmdmr of edges leaving the left hand region (shown in bhle)

wouhl I)(, 5. Similarly, if tim right hand region was chosen to start from this t)oint onwards (i.e.,

including tim no(h_ through whi(:h the dashed line passes), the numt)er of edges leaving the right

hand region (shown in red) woul(I 1)e 8. Note that the e(lg(', lying wholly 1)etwe(;n 1)oints outsid(_

the region has no iml)act on the (:omi)utation. Figure 3 shows how tim in(l('x lists are split.

Assuming a fixed mmd)er of dimensions, the sorts take O(nlogn) tim(;. For t)oint l)robh'ms,

each l)artition or split takes O(n) time. We t herefor(_ get O(n log n) + O(dn) = O(n log n) for t)oint

t)rol)hmls. For grat)h l)robhmls the sorting time is mmhanged. The time to split is now O(e) per

level, as we have to look at (;very e(lg(_ at every level resulting in O(max[n log n, dr]) time. However

in this case it is important to r(',I,mlnl)(;r that the gral)hs (:orl'(_,spoll(ling to unstructm'(_(t grids fl'om

2-(1 aerodynami(" 1)rol)h'ms are planar and thus have e = O(n). Tyt)i(:al 3-(t aero(lynami(: grids have

I)oun(h,d (l(_gr('e and again hav(_ r = ()('r_,). Thus we again ot)tain O(nlogn). The time for fast

l)arametric (tiss(_(:tion is thus an imi)rovement over the ()(n log _ n) tinm tot silnl)h_ binary (tiss(_ction,

ev(ut though parametric disse(:tion uses a more COml)h_x t)artitioning crit(wion.

5 A Simple Parallel Algorithm

Wr now discuss a paralM version of th(, l)arametri(: (liss(,'ction algorithm. This is a sintl)le algorithm

that (loes liot utilize the availa|)h, l)ro(:essors w(,'11: its runtime is O(n) indel,endent of the mmfi)er of

t)rocessors, assuming that tim data 1)oints are supt)li(;d in sorted fi)rm. However its extr(mm siml)li(:-

ity is likely to make its imt)hmt(ultation easy and its measured run times may well b(; (:omp(_'titiv(_

with the more ('Oml)lex algorithm l)resented in S(_.ction 6. We start by ('onsi(h_ring point l)roblems

and discuss grat)h t)robl(m,s (whi('h are only slightly more (:Oml)li('ated to iml,lem(mt) at the (m(l of

this SectiolL

We make the reasonat)le assumption that the t)artitioning is to })e carried out on the same

t)aralM ma(:hin(' on which the l)rol)lem is to 1)e solved. Thus 2- and 3-(I l)rol)hmls are COml)uted on

2- and 3-(t ln(_sh(_s, rest)(_ctiv(_ly. Alt(wnatively, Sill(:(_ a large enough hyl)(_rcub(, can have any lower

dimensional mesh elnl)(_,(hted in it, we may (:hoos(_ to run our l)rol)lems on hyl)er(:ub(;s.

Discussion of a l)aralM imt)lementation is (:ompli(:at(_d l)y the issue of mapping. Wlmreas in tim

serial algorithm we were only ('on('(wned with the partitioning, in the t)aralM algorithm w_' w(mht

10



like to partition ourdonlainandat thesametime deliverthe l'esultillgsut)(tonlainsto the correct

l)r<)cessors.This canresult ill substantialsavingsi_ time. asdiscussedt)elow.

Tim questionthat nowarisesis howwear(,to mat)the 2d sub(h)mains that arise after a depth

d l)artiti(ming onto a p = 2d t)ro(:essor system. The mat)i)ing that we (:hoos(_ is the natuTnl mapping

des(:rit)ed by Berger & Bokhari[1]. When the first [)|section is nla(te, dividing the domain into. say,

a left half and a right half, then the left sul)(tomain is asso(:iate(t with the h_ft half of the mesh and

the right sul)(lomain with the right half. This l)r()cess is rel)cat(_(| mltil th(_ snl)domains at. the dth

h'_vel are rea(:lm(l thes('_ at(, asso(:iated with individual l)ro(:essors.

5.1 Basic bisection step

Sut)l)OSe that w(, have a p = 2 '1 t)rocessor chaiu,-conu, ected l)arallel mal:hine. We shall (h_s('ril)(, how

the basil: 1)ises:tion st(',I) is carried out on this chain an(l then later show how this chain is mal)i)ed

onto the target t)aralh;1 ma(:hine, l

For l)urt)oses of illustration, we shall assmn(' that we have a 2-(1 point l)rot)h_'m with _ l)oints

and that the point data (cOral)rising <:r, y> coordinates) has t)een dul)li(:ated and two sorted lists

l)rel)ared, one for each (:oordinat(;. These lists are loa(tl'_(l into our chain in a linear order, with 2'tl,/p

points per t)ro(:(_ssor.

Sweep-x Sweep through each i)oint of the :r-list sequentially fi'om left to right, ill or(t(_r to identify

the oi)timal split point. The :r-coor(tinat(_ of the sl)lit point is SPLITVALUE.

Migrate-x Mov(_ all points of the x-list with :r-(:oor(linat(_ _< SPLITVALUE to tll(_ l{_ft haft of chain

and remaining points to the right half.

Mark-y Swee I) through the y-list, marking with the lat)el LEFT, thos(' l)oints whose :r-(:oor(tinates

al'(_ _ SPLITVALUE and all others with RIGHT.

Migrate-y Mov(, all points of the y-list marked LEFT (RIGHT) to the left (right) half of the chain.

Eal:h of the above fern" steps takes time prol)ortional to n. The I)a_ui(: t)isection st(_ l) can now I)e

repeated on the two h_lves of the (:ha|n, with the roles of :r and y inter(:hanged. If at each I)isection

step the mmfl)er of t)oints is exa(:tly halved, the time required is 1)rol)ortiollal to

?l ?l 7_

,,,,+ + + -g+... < 2,,,.

IWhich could be a 2'j/'2 × 2'_'_ 2-d mesh, a 2 't/:_ × 2a/:_ x 2a/:_ 3-d mesh, or a dimension d hypercube.

11
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Figure 4: Constructing Bisectionable Chain Embeddings (BCEs).

Parametric binary dissection does not guarantee that e,aeh dissection st(q) will exactly halve

thr llllllll)el' of l)oints. We shall assmne that the maximum numl)er of l)Oillts at every stet) of the

t)artitioning is a constant times the ideal balance at that step. Thus the O(n) result obtained at)ow;

hohls for siml)le as well ms t)arametri(: binary dissection.

5.2 Bisectionable Chain Embedding

Tit(' I)isection t)rocedurt_ des(:ril)e(1 al)ov(, only serves t() partition the domain over a chain ()f l)ro -

cessors. When carrying out COmlmtati(ms (m 2-(1 or 3-(1 (h)mains w(_ w(mld naturally l)I'eti'r to use

2- or 3-(t meshes fi)r our comt)utation. We now (le,scrib(', enlbeddings of (:hains in 2- or 3-(t meshes

which havr the interesting t)rol)erty that wh(;n the basic, bisection ste I) of Section 5.1 is successiv(;ly

al)plied to such (:hains. then the points migrate to the l)rocessors on whi(:h they shouhl t)e mat)pe(l

a(:(:()r(ling to the natuTul mal)l)ing. No (_xl)li(:i! routing of data blo(:ks is rr(luir(_(1. This t)rOl)(wty

elimilmtes an exl)(msive routing stct).

Figure 4 shows how a Biseetionabh, Chain Embe(lding (BCE) is (:onstru(:te(I t)y combilfing two

smaller BCEs. These curves ar(' similar to Peano's sl)aee filling curves. A tbrmal des('ril)tion fi)r

th(, l)roce(hlr(_ for gen(wating the, s(, eurv(_s is given in [13]. Figm'e 5 shows a I)ise(:tional)h_ chain

eml)(_(hling of siz(' 16 x 16. ()ur sorted :r and y-lists are mat)l)ed onto this chain starting ;it ,, and

(m(ting at •. Al)l)li('ation of the, I)asi(: bisection step (vertical cut) results two sets of sul)lists, ()n(_ set

starting at ,, an(l ending at g]: the other starting at o aim ending at •. The t)ro(:edure is r(q)eate(l

with 2 horizontal cuts.

The key l)rol)erty of BCEs is that at this stage the left half of the mesh ('haill will ('ontaill only

tim points of th(_ origillal lists that shouht I)e lnal)ped onto the left half of the mesh and similarly fbr

th(' right half of the chain. Thus when the 1)ise(:tion l)ro('edure is carried out re('ursively on a BCE.

12
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Figure 5: A 16 × 16 BCE. The SOlWd :r and !/lists are mapl)ed onto this chain starting at * and ending at

I

;I:

Figure 6: A 3-d BCE of size 4 x 4 × 4. a', y and z lists are mapped onto this chain starting at • and ending

at • . The first bisection (with a l)lane I)erl)en(ti(:u.lar to the :r axis) will cut the dashed segm_mt. This is

repeated recursively for the !1 and z directions (sl)acing along the :r axis is distort(,d).
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the(latat)oilltsmoveto their l'esl)e(:tiv(_partsof themesh,sothat at theendof the l)roce(lureea(:h

t)ro(:essor('ontainsits naturally inat)l)c(tpoints. The(:on(:(_ptof Bise(:tionat)leChainEml)e(ldings

iseasilyextell(te(tto higher(tilHensions(Figure6).

5.3 Graph Problems

Wepresentour analysisii)r the case of (legr(_e constrained grat)hs emI)e(t(led in 3-sl)ace, all(1 assume

that 3 cot)i('s of the graph are availal)l(_ to us, sorte(l I)y each of the (tilHensi()ns _. Each item in the

.r-list. fi)r ('xalnt)le, contains the <x, y, z> (:oor(linates of the point and tim (:oor(tinat('.s of all points

a(tja('ent to this point. These lists ar(_ mai)t)(_d ,_nto a chain of l)r()('(._ss()rs ms I)ef()i"(, and the chain

of t)ro('essors elHt)e(t(le(l in a 3-(t mesh.

Th(' 1)asi(: t)isc(:tion st(_ l) for gral)h t)rol)lems requires visiting ea_:h t)ro('essor sequentially, and

within ea(:h 1)ro(:essor. traversing tim J:-list. As each point is visite(t, we ('ount the Imml)er of edges

that would I)e (:ut if this point were the extreme t)oint in the I)ise('tio11. This t)ro(:(_ss is ret)eate(l

ill th(' reverse (tire(:tioll and then the point wher(' the minimum of nod_',_ + A ×(ed!le.s _:ut) ()(:curs is

fi)un(l along the lilies of the serial l)ro(:(_(ture of Section 4. This is followed I)y list migration. This

ste I) is t.heli l'ct)(_at(_(t su(:(_essiv(_ly in the y and z (lire(_ti(_lls. ()f (_ours(_. at ('a('h l)oil_t we must visit

th(' ll(_(les a(lja(:elit to that point, and list migration involv(_s moving |lot ()nly ea(:h point. [)llt also

its a(tja(_ent points (i.e.. the (_omt)lete list entry). Our time and space (:omt)lexity is un('hauge(t at

O(n) l)e(_ause we have assu_l_e(l a (_onstant (legre(, (:onstraint.

6 Fast Parallel Algorithm

Tim results of the t)re(:e(ting Se('tio_, suggest a_, O(n) algorithm f()r dissection. This is a simple

_tlgorithm that (toe_ not utilize the availal)h_ ])ro(:essors well: its runtime is i_,(lei)en(ient of the

lluilll)el' of l)rO(_(_ssors available, assuming that tim data points are sut)t)lie(t in sorted t'()r_,_. However

its (,xtreme siml)li(_ity is lik(,ly t() mak(, its iml)l(_entation (_asy a_(l its iHeasu_'e(t ru_l times may

w('ll I)e ('Oml)etitive with the more COml)lex algorithm t)resente(t I)clow.

Th(' i(l(_al algorithm f()r t)arametri(: dissection of an n node l)rol)lem oil a p l)ro(:essor system

would have COml)l(_xity O(n/l)logn/p), which is the same a,s if each l)rocessor were solving the

_Appli¢'ations to high('r or lower dilncnsi(,tts at(, imm('(|iate, although it is to t)(, kept in min(l that the space
r(,(luirt,d I)y this algorithm (,)n ('at:h l)r()ccssor) is prot)ortional to the number of dimt'nsions of th(, t)rot)lt,m. It should
b(, r,,t:all,,d that the ultimate ot)jt,(:tiv(, of the' partitioning is to permit a (:omplt,x a(,ro(tynami(' (_omt)utation to tak['
pla('(,. T|m l)artitioning is ('arried out befo_'c the comt)utation. The actual (:Oml)utation requires ;_ larg(" numt)t,r o|"
v;_rial)h.s t'()r (,at'h l)oint to st or(,, fi)_ (,xampl(,. th(' velt_(_ity vectors, t)ressur(,, density (,t('. Typi('ally from 5() to 10(1
1,)_'_tit_ns _u(, r(,(luir(,d fi)r ('a(:h point [3]. This spa('_, (:an thus fre(,ly I)_,used f()r tim l)ina_y (liss_'t:tion.
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Architecture IbmTime

2-dmesh ()( _ + p' /'-' log p)

3-(1 mesh ()(_ + pJ/:_ logp)

hylmrcube O( _ log :_p)

Table 1: Algorithnlic (:onq)lexity of parallel imrametric dissection on various architoctures.

subt)rolJleln resident on it in isolation. This lower bound is difficult to achiew, because of the

overhead of interlm)C(;ssor (:ommmlication. Neverthc'less we have suc(:eeded in developillg good

algorithms tbr 2 and 3-(t lncsh(_s and hyper('ubes. The details of these algorithms are involved aim

may b(, tbund in our earlier technical report [13]. Table 1 summarizes our results.

7 Applications to Unstructured Meshes

A 1)ortion of a 2-(t unstI'u('tur('d mesh is shown in Figure 7. It (:an t)e seen that this mesh has a very

large variation in no(h_ (hmsity. The ol).jectiv(_, in generating the Inesh. is to have a high('r (tensily

of no(les in the regions where there is greater need for accura(:y. It is this variation in (t('nsity that

makes su(:h meshes difficult to l)artition. Three-(limensional unstru(:ture(l meshes are an obvious

ext(msion |)ut arc', diffi(:ult to l)ortray on a 2-(t page. We show in Figure 8 a 3-dixncnsioIlal mesh

surroun(ling the wing, flls(',lage and cngin(, of an aerol)lane.

V_ have imt)lelnented tim Fast Parametric Dissection algorithm of Se(:ti(m 4, using (,(tuation (2)

of S(',('tion 3. This algorithm has been used to 1)artition several very large 3-(t unstructur(_d grids

taken fl'om acro(tynmni(: l)rot)lems. Who, n apl)lying l)arametri(: disse(:tion on such grids, it is often

the (:ase that the first, (:ut is badly iInl)alan(:e(t as far as tim mmd)er of nodes is (:on(:(',rne(l. This

is |)(_(:ausc I)inary dissection (:onsiders the grat)h to t)e emtmdded in a rectangl(, or (:ul)oi(t. with

edges extending to tim sides of th(' re(:tangh, or (:uboi(l (as shown in Figure 7). The mesh really

occul)i(_s a roughly ellipsoidal region of 2 or 3-(1 sl)a(:0, (whi(:h (:mmot t)e depi(:t(,(t in Figure 7 as it

is very large coml)ar(_d to t,tm wing (:ross-s(_ction shown). When A is non zero, the first cut is likely

to slice off' a small tip of the ellipsoi(t, s() as to minimize the numl)er of e(tg('_s cut. Thus we have a

tiny mmfl)er of no(t(_s in one region and most of the nodes in the other region. The ot)je(:tiv(_ (2) is

corre(:tly minimiz(,,d an(l tim partitioning obtained is SUl)erior to a plain partitioning, but only fi)r

depth 1. Beyond (tel)th 1 or 2 this poor initial (:ut leads to t)3(1 l)artitions. This 1)henomenon is

very similar to that descrit)(',d I)y St(m(' [10] in (:onne('tion with the l)artitioning ()f random graphs.

()ur solutioll to this l)r()bl(ml is to carry out tim first 1. 2 or 3 (:uts with A = 0 an(I swit(:h over to
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Figure'7: A 2-d unstructurt_d mt,sh surrounding th¢, cross section of an aeroplane wing with ¢,xtended flaps

and slat.
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Figure 8: A 3-dhnensional unst,ruct, nred iii(!_h surrounding the wing, f'u,_elageand en/4ine of _111aerol)lane.
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the (h'sire(i vMue of A only after these initial cuts have bMance, d the numt)er of nodes in the iuitial

2, 4 or 8 subregions.

In or(t(;r to evaluate the spee(iu l) that would I)e obtaiimd if a parametri(: binary dissection were

used, (:omt)are(t to plain t)im_ry dissection, we carried out an experiment with a 3-(1 mesh of size

106,064 nodes and 697,992 cdges (partly shown in Figure 8). This mesh is (hu'ive, d fi'om a probhun

involving a wing and engine pod and half a fllselage. Mea,sured run time on a 50 MHz MIPS R4000

1)rocessor for a det)th 15 partition of this mesh is 83 se(:onds ((_x(:lu(ling time to input the mesh).

The following evaluation t)ro(:edur(_ was rel)e, atc(l tbr depths = 2 - 15.

* Run the i)arametri(: dissection algorithm for vax'ious values of A, starting with 0.

• For ea(:h rml ol)tain maxnode.,+(A) aim "ma:rcdge,,+(A), the maximum llUlllber of e,dges and

xio(les over all regiolls.

• The norlllalize(t run time tbr a dissection is

/paramet,'i((A) = 7na:l:n(,des(A) + A × ma:rcdg(;.s(A).

This assumes ideal c()nHnlmi(:ations (m the target l)arallcl l)ro('essor.

• maxnodc,_(0) and ma:redges(()) are, the vahms that would have ol)tained if plain binary dis-

section had I)een use(t, since for A = 0 l)arametric dissection reduces to I)lMn dissection. Thus

for this t)r(fl)lcm the time taken I)y a plain (lisse(:tion is

tplai,, = 'ma:r'node.s(O) + A × maxedges(()).

• For a given value of A the l)erformau(:e a(tv;mtage of the parametric Mgorithm is

hnprovement(A) = tplain
tparam(qri( ( A ) "

The results of the al)ove eXl)erim(mt are summarized in the plots of Figure 9 whi(:h show the

l)erformanc(, iml)rovement of param(_tri(: dissection over plain dissection. Since paramctri(" dissec-

tion redu(:es to plain (lisse(Mon for A -- 0, the curve corresponding to this A is constant at 1.00.

There is no imt)rovemeut f()r (hq)th--1 and 2 t_e(:ause t)lMn disse(:tion is used for these del)ths, as

(lis('uss('(t al)ove.
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Figure 9: Improvement ofparametric binary dissectionover plainbinarydissection,when appliedto a 3-d

aerodynamic mesh with _ 0.1 millionnodes and _ 0.7 millionedges, for depths 1-15 (corresponding to

I,2,4,...,32768 processors).For A = 0 parametric dissectionreduces to plain binary dissectionand there

isno speedup.

19



m
©

E
©
>
0
g.

E

1.15

1.10

1.05

1.00

0.95

Random Graph n=lO0000 e=500287

2 4 6 8 i0 12

depth

14

X:4

2

1

2-1

2-2

0

Figure 10: Performance improvement of parametric binary dissection on a random graph with 0.1

million nodes and 0.5 million edges. Performance improvements are obtained over plain binary

dissection for all but the smallest values. In practical applications, A is likely to be greater than 1.
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II can 1)e seen that parametric dissection gives good imi)rovenw, nts over plain dissection fi)r

A > 1 over most of the range of depths. For A _> 1, there is a steel) increa,se in improvement beyond

depth 10. For A = 4 the improw_ment is greater than 20% for depth 15. We note that in t)ractical

machines the value of A (the remot(fflo(:al ac(:ess time ratio) is usually 1 or greater.

Figures l0 and 11 show the t)erformance of l)arametri(" binary dissection on random graphs.

Here too the t)erforman('(_ iml)l'OV(_nmllt is substantial for A __ 0.5.

8 Color Image Quantization with Fast Adaptive Dissection

We now (:ore(, to the second variant of binary (tisse(:tion. namely Fast Adal)tive Disse(:tion (FAD).

This algorithm fin(Is appli(:ation in color imag_: quan, tization, where samples in a high-resolution

(:olor st)a(:e are mat)l)ed ()lit.()a lower resolution space in a way that nfinimizes the (:olor error [7].

Mor(' fi)rmally, we ar(, given a digital image whose t)ixels are (:hosen fl'om a palette containing 2m

(:olors, au(t we wish to generate an ac(:(q)tat)le rel)r()du('tion using a t)alett(_ ()f 2 _' (:olors, where

k < m. Tyt)i('al values for n_ run from 15 24, whih_ k is usually in the l'ang(_ from 8 12. Coh)r

quantization is (:Olmnonly us(_(l to (:onvert full-color images illto _:olormapped or p,seudocolor images

in whi(:h each l)ixel is a k-tilt index into a (:oh)r lo(_kup table, or colormap. Tim resulting images arc

more (:Oral)act than the originals and are suitable for disl)lay using the inexl)ensive video systems

fi)und in most l)ersonal computers and many workstations.

Ill t'ull-(:olor images, the m lilts of (:olor information are tyi)i(:ally divided into three (listiu(:t

(:olor (:Olllt)OllelltS, each using al)proximately _,/3 lilts. If we assume a red-greell-I)hw (RGB) (:olor

model, then each (:Oml)onent tel)resents an axis in a thr(_e-dimensional (:olor grid. The (:Oml)onent

values at ea('h l)ix(d can be thought of as in(li(:es into this grid. The l)rol)lem then t)e(:om(_s one of

partitioning the grid such that (1) the total mmfl)er of regions is t)ounde(l by 2 _, and (2) the single

(:olor value (:omt)uted for ca(ql regioil serves as a satisfactory ret)resentativ(, of all th(_ (:olors withiu

the region.

8.1 Fast Adaptive Dissection

A variety of heuristi(: te(:hni(lu('s have beell 1)rol)osed for partitioning the (:olor Sl)a('e. Our at)proach

most closely resembles He('kb(,rt's median cut algorithm [7], but uses a Inodified version of Fast

Parametri(" Dissection (Se(:tion 4) to Sl)eed u t) Ol)erations involving the (:oh)r samt)les within regions.

These in(:lu(h' searching for split l)oints, determination of I_oun(ting b()xes, and (:Oml)utatiou of

ret)reselltative ('olors.
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The first step is to scan the original imageand recordwhich points in the color spaceare

rel)resented,and howfrequently.Westorethis informationin a 3-(1histogrammatrix (Figure12).

The histogramis then seamledto producea list of the colorswhichoccur. The color list is

replicatedandsortedtbreachcolorcomponent,asrequiredbytheFastDissectionalgorithm. Since

ourcolori'omponentsrequireonlya fewlilts each,wecanavoidthe levelof indirectionrequiredby

the PARAMETRIC_CUTalgorithmof Se(:tion4. Instead,ea(:hcolorcorot)orientis storeddire.ctlyas

a bit field within a list item, reducing1)othmemoryand COmlmtationcosts.

Wenextnee(la strategyfor partitioningthe lists. In thecontextof this t)robhun,the twomost

imt)ortantcriteria arepopularity, defined as the mmll)er of l)ixels rel)resented 1)y the colors within a

region, and color error, defined as the, nlaxilnuin (tistan('e t)etween t)oints within a region. We have

found that a multit)licative relationshi 1) 1)etween these two parameters i)rodu(:es l)etter images than

either of them alone, anti is also SUl)erior to an a(tditive relationshil). Thus our ol)jective function

in FAD is popularity! x color error'.

In our earlier descril)tions of Parametric Binary Disse(:tion an(t Fast Disse(:tion, we have as-

sumed a re(:ursive l)artitioning t)ro(:ess which descends until the maximum numl)er of subregions is

l)rodu(:ed, or until a region ('annot 1)e subdivided filrther. For Fast Adal)tive Dissection. we follow

Heckl)ert's lea(t and too(lily this strategy to utilize adaptive przrtitionin9. With a(lal)tive partition-

ing, the directions of the (:uts are not l)redetermined t)y the det)th of the recursion, lint are ('hosen

dynamically based on t)rot)erties of the data. We discuss this 1)oillt in more detail below.

Another disadvantage of our original recursive fi)rmulation is that the l)artitioning l)ro('ess (:an

"l)ottolll ()lit" t)relllatllrely olle or lllore t)ran('hes of the re(:ursion tree IIlay eil(:Ollllter regions

whi(:h ('annot I)e fin'ther sul)divide(l, even though other I)ran(:hes may offer amt)le Ol)t)ortunity for

sul)division. The net result is that some of the available (-olorma l) entries g() unuse, d. To overcome

this prol)lem, we use an iterative variant of Fast Dissection. After each cut is made. the ol)jective

flm('tion is evaluated for the resulting sul)regions, and they are t)la('e(t on a global subregion list,

sorted I)y (lest:ending value of the ()t)je.etive function. At ea('h ste t) of the iteration, the first sul)region

on the list, is t)artitioned. This t)ro(:edure guarantees that e,very available eolorma t) entry will be

used (assuming the original image ('ontains at least 2/`. colors), and gives priority to sl)litting regions

with the largest deviations from the ideal.

Our ('olor (luantization algorithm is therefore adai)tive in two ways: the direction of the cuts is

data-dependent, as is the (:hoi(:(_ of regions to t)e split. We ('all this modified al)t)roach Fast Adaptive

DissectioTi (or FAD). and refer to color quantization using this techni(tue as FAD quantizatim_.
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W('havefbun(tthat, for color quantizatiom tile objective flmction is needed only to determine

which region to split next. To find the split point within each region, a simpler and faster heuristic

works well: regions a,'e split at the midpoint along their longest edge, i.(_., in the direction of largest

(:olor error (Het:kl)ert's median cut strategy). With the FAD algorithm the midpoint can be found

qui(:kly using a binary sear(:h on the (:orresl)on(ting sorted sublist. The popularity vahm for each

sut)region is (:onveniently tallied during the re-ordering pass on either of the remaining sut)lists,

with the _:olor fiel(ts in ea(:h list item serving ms in(ti(:(_s into the original histogram matrix.

T() determine color error, we use a simi)le estimate. Rather than sear(:hing for the two most

extreme l)oints in each region or (,xl)li(:itly (:omputing the error r(_lative to the original linage, we use

tim square of the length of the (liagonal of the I)oun(ling box fi)r the region. With Fast Disse(:tion.

fin(ling the t)oun(ling box is trivial we siml)ly obtain the rcst)e(:tive maximum and minimum (:olor

(:omi)onents h'om ea(:h of the three sort lists. At each partitioning step, these are (tirectly available

via the k and U list indices. A dynamic view of the partitioning pro(:ess can be found in [14].

When the partitioning t)h_se is (:omt)lete, the representative (_olor of each region is set to the

average of the (:olor values within that region, weighted i)y the fi'e(luen(:y of ttmir o(:curren('e (Fig-

ure 13). The (:olle(:tion of representativ(, colors f()rms the new (:olormap tbr the imag(_. All of the

histogram entries are then rel)la(:e(t I)y in(li(:es to their rei)res(_ntative (:oh)rs. The sort list.s Sl)eed u 1)

i)oth of these stel)s, since empty cells in th(_ histogram are not r(_i)resented in the lists and therefore

(1(, not have to I)e examined.

To (:omt)lete the l)ro(:ess, the original image is re-s(:amm(t, and the value of each l)ixel is rel)la(:ed

with its (:olormal) in(lex, using the histogram matrix as a lookul) tal)h_.

8.2 Experimental Results

Many (:olor quantiz;ttion te(:hni(lues have t)e(_,n (tevelol)(_d I)reviously [5] [6] [7] [9] [11]; (,urs is (if interest

t)e(:ause it l)ro(luces good results at high Sl)ee(l. Unfortmlat(_ly, (lire(:t comparisons with earlier

methods ar(' (tilfi(:ult I)e(:ause

• l)r(wious results have been r(,t)orte(l over a l)eriod of 15 years, spanning several generations of

t)ro('('ssor t('(:hnology;

* different metho(ls were t('ste(l against (iifferent s(_ts of input images: and

* s()ur(:e _:()(te fl'om previous imt)h_mentations is not readily available.
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Figure12:RGB histogr_mlarrayfi)r the 15-bit imagein Figure14b.Non-zeroeh'mentsarerepre-
sentedby their correspondingcolors.

Figure13:Timcolorspacein Figure12partitionedinto256regionsusingFastAdaptiw'Dissect,ion.
Theinflu('n(:eof th(; popularity l)aramet('x gives rise to large variations in l)artiti(m size.
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Algorithm Step

ProcessorType
IBM POWER2

67 MHz
SGI/MIPS R4400

250 MHz

Sun UltraSPARC

167 MHz

1. Pre-quantize & histogranl 0.1042 0.0836 0.{}475

2. BuihI sort lists 0.0062 0.0098 0.0081

3. Partition ('olor space 0.0130 0.0179 0.01(}7

4. Buiht colormap 0.0040 0.0040 (}.0031

5. R('nmp image 0.0344 0.0308 0.0265

Total time II 0.1618 0.1461 0.0959

Table 2: Runtimes (in seconds) for FAD quantization.

However, w(' t)('licv(_ that our method is (:ompetitive with existing techniques. Whih_ high(u" image

(luality may 1)e ot)tained with more computational effort, and faster results can I)e achieve(l at lower

image quality, the FAD algorithm provides a good balance fbr applications in whi('h both st)eed

and (tuality are important.

\Vc hav(, ilnl)lement(_(l FAD (tuantization in the C language and test(_(l it on several workstation

t)latfi)rms. Tal)le 2 shows (_xe(:ution times tbr the test image shown ill Figure 14a. As part of the

histogr;umning st et), we r(_(luc(_ the cohw l)re(:ision of tim original image from 24 t() 15 lilts. This

simt)lification. (unt)h)ye(l t)y ninny color (tuantization algorithms, (h_(:r(_ases ln(mlory and t)roc(_ssing

r(_(luir(un(ufls significantly while degrading the original image only slightly (Figul'e 141)).

As the timings indicate, the pixel-level operations on the image data (steps 1 and 5) dominate

the (_x(_(:ution time, comprising froin 78 85% of the total. The partitiolmr (steps 2 and 3) re(tuires

12 19% t)f the total time, while ('omputation of the ret)rc, s(mtative coh)rs and construction of tim

mat)l)ing t al)h, (step 4) requires a miniscule 3%.

Although the fast (lissection Inethod partitions tile color space rapidly (step 3), we must take

('are that the overtwa(l tbr the initial sorts (step 2) doesn't outweigh the b(m(,'fits. We have found

that the fastest way to sort the lists is to simply scan the histogram array in the desil'e(l order,

at)l)(m(ling non-z(_'r(J (_lltries to the list ms we encolallter them. This is easily a(:(:Oml)lished t)y llsing

a trit)ly-n(,st('(t h)op (one fi)r ea('h dimension) with the appropriate sorting index (R, G, or B) at

tim outermost h_vel. For example, the tbllowing C ('od(_ fragment produces a list of c()lors sorted
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(a)Original24-1)ilimage (141813 colors).

(t)) Uniform (tuantization to 15 bits (6980 colors). QRMSE = 4.2.

Figur('. 14: Test imag(, (559 x 436 l)ix('ls).
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(c) ('niform quantization to 8 bitm QRMSE = 22.0. Only 140 colors are used: the remaining 116 lie in

regions of the color space which are not tel)resented in the input image. Not_ _ t.h_, sovere color banding in

the flesh tones and background, and loss of highlight detail in the t-shirts.

(d) FAD quantization to 256 colors. QI/MSE = 9.2. Some color banding persists, but details re-emerge in

the background and on the shirts.

Figure 14 (coTI,t'd): Test image (559 x 436 pixds).

28



alongtheG axis:

const int DIM = 32, MAXCOLORS = DIM * DIM * DIM;

unsigned histogram[DIM] [DIM] [DIM] ;

int r, g, b, i;

unsigned rlist [MAXCOLORS], glist [MAXCOLORS], blist [MAXCOLORS] ;

for (i = O, g = O; g < DIM; g++)

for (b = O; b < DIM; b++)

for (r = O; r < DIM; r++)

if (histogram[r] [g] [b])

glist[i++] = (r << i0) i (g << 5) I b;

A similar loop is used to sort in tim B direction. For the R sort, we, can optimize filrthcr by taking

a(tvantag(; of C's row-lnajor storag(, or(lcr tbr arrays:

unsigned *h;

int j ;

. . .

h = (unsigned *) histogram;

for (i = j = O; i < MAXCOLORS; i++)

if (h[i])

rlist [j++] = i;

Our tests in(li(:at(' that this sorting strategy is an or(h_r of magnitu(lc fi_stcr than a tmmd (tui(:ks()rt.

and is ther(ffor(_ essential in realizing the l)erfi)rmanc(, gains of the FAD al)t)roa(:h.
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A fast(:oiorquantizerisuseflllonlyif it l)ro(lu(:essatisfactoryimages.To mea,_ureimagequality,

w(,('Oral)arethe originalfllll-('olor imageto thequantize(1result usingthe quautization root mean

,_quaT'_ error (QRMSE) metric defined in [9]. For comparison purposes, Figure 14(: shows the results

obtained I)y simply decreasing the color resolution of the original image to 8 bits (3 bits each for

red and green. 2 bits for 1)lue), an ot)eration which runs in at)out one-fifth the time of th(' FAD

algorithm. Figure 14(1 shows the imt)rovement obtained using FAD quantization.

9 Conclusions

We have t)resente(t two vai'iants of the binary (tisse(:tion algorithm for partitioning n(m-uniform

(h)mains. The first of these, Parametri(: Binary Disse(_tion, or PBD, finds at)t)li(:ations in parallel

t)ro(:esxillg. We have analyzed the run time of PBD for serial and parallel ma(:hines and t)resente(t

some measured l)ertbrm;mee figures. The t)arametri(: (lisse(:tion algorithln is seen to t)rovide l)ett(;r

l)ertbrman(:e thall the original binary (tisxe(:tioll algorithm for large del)ths of partitioning.

A t'axt algorithm for 1)arametri(: (tisxe(:tion was presented in Se(_tion 4. This algorithm has run

time ()('_ h)g 'r_,)as (_t)l)ose(t to the original O(n log 2 n) (lisseetion algorithm. Th(, time for (lisseetioil

is thux (:()ml)letely masked t)y tim time re(tuire(t to sort the iiq)nt (lata.

W(, also l)rexente(t two t)arallel algorithmx for l)aram('tri(: (liss(',:ti(m. Th(' O(n) algorithm is

simple to imt)h,ment and will likely t)e uxeflll in situations where th(' mesh ix being input serially

to the t)ro(:essor, ax ill thix (:as(' the (lisse(:tion time is mask(:(I by the tim(_ to load. ()ur more

elal)orat(, algorithm hax time O((n/p 1/2) + pl/2 logp), O((n/p ':/:_) +pt/:_ logp) and O((n/p)log:_ p)

for 2-(1 meshes. 3-(I meshes and hyl)ercul)es, resl)ec:tively. This algorithm t)erforms well for l)robh;ms

in whi(_h the mmfi)er of nodes n is large (:onq)are(1 to the imml_er of t)ro(:essors, a (:as(; that ix of

(:oilsiderat)h_ l)ra(:ti(:al interest.

The se(:on(l variant ix Fast A(tat)tive Disse(:tion, or FAD. This algorithm has been at)l)lie(t to

the l)rot)lem of (:olor image (luantization, wlmr(_ it yieldx good results at high Sl)(,eds. The sort lists

used in our fast (lisx0:(:tion at)l)roa('h are k('y in re(tu(:illg exe(_ution tim(:s f'or operations on data

wdues within sul)regions.
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Futurework in this area shall develop along the following lines:

1. hnt)rovenmnts in the l)aralM PBD algoritlnn. Communication overhead shows up prolninently

ill the expressions for nm time of ollr algorithm. Whethe, r this can be reduced significantly

is all o|)en question.

2. Implementations of the paralM w'.rsions of the disse, ction algorithms for mesh architectures

such as the Intel Paragon and ASCI Red machines.

3. Evaluation of the performance of PBD on a large set of unstructured lneshes.

4. Use of these dissections for actual computatiolL esl)et:ially for aerodynamic l)rot)lems.

5. Al)plicati(ms of PBD/FAD to other areas, such as partitioning Im)blems in circuit and VLSI

design.
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